A list of works I contributed to, including direct links to the PDFs (either from the publisher or on arXiv).

Peer-Reviewed Publications

  1. S. Girardo et al., “Standardized microgel beads as elastic cell mechanical probes,” Journal of Materials Chemistry B 6(39): 6245–6261, 2018. doi:10.1039/C8TB01421C.  PDF 
  2. N. Hauck et al., “Droplet-Assisted Microfluidic Fabrication and Characterization of Multifunctional Polysaccharide Microgels Formed by Multicomponent Reactions,” Polymers 10(10): 1055, 2018. doi:10.3390/polym10101055.  PDF 
  3. R. Schlüßler et al., “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophysical Journal 115(5): 911–923, 2018. doi:10.1016/j.bpj.2018.07.027.  PDF 
  4. P. Müller et al., “Accurate evaluation of size and refractive index for spherical objects in quantitative phase imaging,” Optics Express 26(8): 10729–10743, 2018. doi:10.1364/OE.26.010729.  PDF 
  5. M. Herbig et al., “Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing,” Biomicrofluidics 12(4): 042214, 2018. doi:10.1063/1.5027197.  PDF 
  6. M. Schürmann et al., “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” Journal of Biophotonics 11(3): e201700145, 2017. doi:10.1002/jbio.201700145.  PDF 
  7. M. Urbanska et al., “Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage,” Development 144(23): 4313–4321, 2017. doi:10.1242/dev.155218.  PDF 
  8. M. C. Munder et al., “A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy,” eLife 5, 2016. doi:10.7554/elife.09347.  PDF 
  9. M. Schürmann et al., “Cell nuclei have lower refractive index and mass density than cytoplasm,” Journal of Biophotonics 9(10): 1068–1076, 2016. doi:10.1002/jbio.201500273.  PDF 
  10. P. Müller et al., “ODTbrain: a Python library for full-view, dense diffraction tomography,” BMC Bioinformatics 16(1): 1–9, 2015. doi:10.1186/s12859-015-0764-0.  PDF 
  11. P. Müller et al., “PyCorrFit – generic data evaluation for fluorescence correlation spectroscopy,” Bioinformatics 30(17): 2532–2533, 2014. doi:10.1093/bioinformatics/btu328.  PDF 

Book Chapters

  1. M. Herbig et al., “Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells,” in Flow Cytometry Protocols, 4, eds Teresa S. Hawley and Robert G. Hawley (Springer New York, 347–369), 2017. doi:10.1007/978-1-4939-7346-0_15.
  2. M. Schürmann et al., “Refractive index measurements of single, spherical cells using digital holographic microscopy,” in Biophysical Methods in Cell Biology, 125, ed Ewa K. Paluch (Academic Press, 143–159), 2015. doi:10.1016/bs.mcb.2014.10.016.  PDF 
  3. P. Müller et al., “Scanning fluorescence correlation spectroscopy (SFCS) with a scan path perpendicular to the membrane plane,” in Methods in Molecular Biology, 1076, (635–51), 2014. doi:10.1007/978-1-62703-649-8_29.  PDF 

Other Publications

  1. P. Müller and J. Guck, “Response to Comment on ’Cell nuclei have lower refractive index and mass density than cytoplasm,’” Journal of Biophotonics, comment, e201800095, 2018. doi:10.1002/jbio.201800095.  PDF 
  2. P. Müller, “Optical Diffraction Tomography for Single Cells,” (PhD thesis, TU Dresden), 2016. url:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202261.  PDF 
  3. P. Müller et al., “Single-cell diffraction tomography with optofluidic rotation about a tilted axis,” Proc. of SPIE 9548: 95480U, 2015. doi:10.1117/12.2191501.  PDF 
  4. P. Müller et al., “The Theory of Diffraction Tomography,” 2015. arXiv:1507.00466 [q-bio.QM].  PDF