publications
A list of works I contributed to, including direct links to the PDFs (either from the publisher or on arXiv), datasets, or source code.
Peer-Reviewed Publications
- L. D. Wittwer et al., “A New Hyperelastic Lookup Table for RT-DC,” Soft Matter , 2023. doi:10.1039/D2SM01418A. PDF DATA
- N. Hauck et al., “PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers,” Mater. Adv. 3(15): 6179–6190, 2022. doi:10.1039/D2MA00296E. PDF
- C. Riquelme-Guzmán et al., “In vivo assessment of mechanical properties during axolotl development and regeneration using confocal Brillouin microscopy,” , 2022. doi:10.1101/2022.03.01.482501. PDF
- S. Abuhattum et al., “An explicit model to extract viscoelastic properties of cells from AFM force-indentation curves,” iScience 25(4): 104016, 2022. doi:https://doi.org/10.1016/j.isci.2022.104016. PDF DATA CODE
- R. Schlüßler et al., “Correlative all-optical quantification of mass density and mechanics of sub-cellular compartments with fluorescence specificity,” eLife 11, 2022. doi:10.7554/elife.68490. url:https://doi.org/10.7554%2Felife.68490. PDF
- S. Abuhattum et al., “Unbiased retrieval of frequency-dependent mechanical properties from noisy time-dependent signals,” Biophysical Reports : 100054, 2022. doi:https://doi.org/10.1016/j.bpr.2022.100054. PDF
- A. A. Nawaz et al., “Intelligent image-based deformation-assisted cell sorting with molecular specificity,” Nature Methods , 2020. doi:10.1038/s41592-020-0831-y. PDF DATA
- P. Müller et al., “DryMass: handling and analyzing quantitative phase microscopy images of spherical, cell-sized objects,” BMC Bioinformatics 21(1): 226, 2020. doi:10.1186/s12859-020-03553-y. PDF DATA CODE
- K. Wagner et al., “Colloidal crystals of compliant microgel beads to study cell migration and mechanosensitivity in 3D,” Soft Matter , 2019. doi:10.1039/C9SM01226E. PDF
- P. Müller et al., “nanite: using machine learning to assess the quality of atomic force microscopy-enabled nano-indentation data,” BMC Bioinformatics 20(1): 1–9, 2019. doi:10.1186/s12859-019-3010-3. PDF DATA CODE
- S. Girardo et al., “Standardized microgel beads as elastic cell mechanical probes,” Journal of Materials Chemistry B 6(39): 6245–6261, 2018. doi:10.1039/C8TB01421C. PDF
- N. Hauck et al., “Droplet-Assisted Microfluidic Fabrication and Characterization of Multifunctional Polysaccharide Microgels Formed by Multicomponent Reactions,” Polymers 10(10): 1055, 2018. doi:10.3390/polym10101055. PDF
- M. Herbig et al., “Statistics for real-time deformability cytometry: Clustering, dimensionality reduction, and significance testing,” Biomicrofluidics 12(4): 042214, 2018. doi:10.1063/1.5027197. PDF
- P. Müller et al., “Accurate evaluation of size and refractive index for spherical objects in quantitative phase imaging,” Optics Express 26(8): 10729–10743, 2018. doi:10.1364/OE.26.010729. PDF DATA CODE
- R. Schlüßler et al., “Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging,” Biophysical Journal 115(5): 911–923, 2018. doi:10.1016/j.bpj.2018.07.027. PDF
- M. Urbanska et al., “Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage,” Development 144(23): 4313–4321, 2017. doi:10.1242/dev.155218. PDF
- M. Schürmann et al., “Three-dimensional correlative single-cell imaging utilizing fluorescence and refractive index tomography,” Journal of Biophotonics 11(3): e201700145, 2017. doi:10.1002/jbio.201700145. PDF DATA
- M. Schürmann et al., “Cell nuclei have lower refractive index and mass density than cytoplasm,” Journal of Biophotonics 9(10): 1068–1076, 2016. doi:10.1002/jbio.201500273. PDF
- M. C. Munder et al., “A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy,” eLife 5, 2016. doi:10.7554/elife.09347. PDF
- P. Müller et al., “ODTbrain: a Python library for full-view, dense diffraction tomography,” BMC Bioinformatics 16(1): 1–9, 2015. doi:10.1186/s12859-015-0764-0. PDF DATA CODE
- P. Müller et al., “PyCorrFit – generic data evaluation for fluorescence correlation spectroscopy,” Bioinformatics 30(17): 2532–2533, 2014. doi:10.1093/bioinformatics/btu328. PDF CODE
Book Chapters
- M. Herbig et al., “Real-Time Deformability Cytometry: Label-Free Functional Characterization of Cells,” in Flow Cytometry Protocols, 4, eds Teresa S. Hawley and Robert G. Hawley (Springer New York, 347–369), 2017. doi:10.1007/978-1-4939-7346-0_15.
- M. Schürmann et al., “Refractive index measurements of single, spherical cells using digital holographic microscopy,” in Biophysical Methods in Cell Biology, 125, ed Ewa K. Paluch (Academic Press, 143–159), 2015. doi:10.1016/bs.mcb.2014.10.016. PDF
- P. Müller et al., “Scanning fluorescence correlation spectroscopy (SFCS) with a scan path perpendicular to the membrane plane,” in Methods in Molecular Biology, 1076, (635–51), 2014. doi:10.1007/978-1-62703-649-8_29. PDF CODE
Other Publications
- P. Müller and J. Guck, “Response to Comment on ’Cell nuclei have lower refractive index and mass density than cytoplasm,’” Journal of Biophotonics, comment, e201800095, 2018. doi:10.1002/jbio.201800095. PDF
- P. Müller, “Optical Diffraction Tomography for Single Cells,” (PhD thesis, TU Dresden), 2016. url:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202261. PDF
- P. Müller et al., “Single-cell diffraction tomography with optofluidic rotation about a tilted axis,” Proc. of SPIE 9548: 95480U, 2015. doi:10.1117/12.2191501. PDF CODE
- P. Müller et al., “The Theory of Diffraction Tomography,” 2015. arXiv:1507.00466 [q-bio.QM]. PDF