A list of works I con­tributed to, includ­ing direct links to the PDFs (ei­ther from the pub­lisher or on arXiv).

Peer-Reviewed Publications

  1. R. Schlüßler et al., “Me­chan­i­cal Map­ping of Spinal Cord Growth and Repair in Liv­ing Zebrafish Lar­vae by Bril­louin Imaging,” Bio­phys­i­cal Journal 115(5): 911–923, 2018. doi:10.1016/j.bpj.2018.07.027.  PDF 
  2. P. Müller et al., “Ac­cu­rate eval­u­a­tion of size and refrac­tive index for spher­i­cal objects in quan­ti­ta­tive phase imaging,” Optics Express 26(8): 10729–10743, 2018. doi:10.1364/OE.26.010729.  PDF 
  3. M. Her­big et al., “Sta­tis­tics for real-­time deforma­bil­ity cytom­e­try: Clustering, dimen­sion­al­ity reduction, and sig­nif­i­cance testing,” Biomicrofluidics 12(4): 042214, 2018. doi:10.1063/1.5027197.  PDF 
  4. M. Schür­mann et al., “Three­-di­men­sional cor­rel­a­tive sin­gle-­cell imag­ing uti­liz­ing flu­o­res­cence and refrac­tive index tomography,” Jour­nal of Biophotonics 11(3): e201700145, 2017. doi:10.1002/jbio.201700145.  PDF 
  5. M. Urban­ska et al., “Sin­gle-­cell mechan­i­cal phe­no­type is an intrin­sic marker of repro­gram­ming and dif­fer­en­ti­a­tion along the mouse neural lineage,” Development 144(23): 4313–4321, 2017. doi:10.1242/dev.155218.  PDF 
  6. M. C. Munder et al., “A pH-­driven tran­si­tion of the cyto­plasm from a flu­id- to a solid-­like state pro­motes entry into dormancy,” eLife 5, 2016. doi:10.7554/elife.09347.  PDF 
  7. M. Schür­mann et al., “Cell nuclei have lower refrac­tive index and mass den­sity than cytoplasm,” Jour­nal of Biophotonics 9(10): 1068–1076, 2016. doi:10.1002/jbio.201500273.  PDF 
  8. P. Müller et al., “ODT­brain: a Python library for full-view, dense dif­frac­tion tomography,” BMC Bioinformatics 16(1): 1–9, 2015. doi:10.1186/s12859-015-0764-0.  PDF 
  9. P. Müller et al., “Py­Cor­rFit – generic data eval­u­a­tion for flu­o­res­cence cor­re­la­tion spectroscopy,” Bioinformatics 30(17): 2532–2533, 2014. doi:10.1093/bioinformatics/btu328.  PDF 

Book Chapters

  1. M. Her­big et al., “Re­al-­Time Deforma­bil­ity Cytom­e­try: Label-Free Func­tional Char­ac­ter­i­za­tion of Cells,” in Flow Cytom­e­try Protocols, 4, eds Teresa S. Haw­ley and Robert G. Haw­ley (Springer New York, 347–369), 2017. doi:10.1007/978-1-4939-7346-0_15.
  2. M. Schür­mann et al., “Re­frac­tive index mea­sure­ments of single, spher­i­cal cells using dig­i­tal holo­graphic microscopy,” in Bio­phys­i­cal Meth­ods in Cell Biology, 125, ed Ewa K. Paluch (Aca­d­emic Press, 143–159), 2015. doi:10.1016/bs.mcb.2014.10.016.  PDF 
  3. P. Müller et al., “Scan­ning flu­o­res­cence cor­re­la­tion spec­troscopy (SFCS) with a scan path per­pen­dic­u­lar to the mem­brane plane,” in Meth­ods in Mole­c­u­lar Biology, 1076, (635–51), 2014. doi:10.1007/978-1-62703-649-8_29.  PDF 

Other Publications

  1. P. Müller and J. Guck, “Re­sponse to Com­ment on ’Cell nuclei have lower refrac­tive index and mass den­sity than cytoplasm,’” Jour­nal of Biophotonics, comment, e201800095, 2018. doi:10.1002/jbio.201800095.  PDF 
  2. P. Müller, “Op­ti­cal Dif­frac­tion Tomog­ra­phy for Sin­gle Cells,” (PhD thesis, TU Dresden), 2016. url:http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202261.  PDF 
  3. P. Müller et al., “Sin­gle-­cell dif­frac­tion tomog­ra­phy with optoflu­idic rota­tion about a tilted axis,” Proc. of SPIE 9548: 95480U, 2015. doi:10.1117/12.2191501.  PDF 
  4. P. Müller et al., “The The­ory of Dif­frac­tion Tomography,” 2015. arXiv:1507.00466 [q-bio.QM].  PDF